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Abstract

The determination of the radial and latitudinal temperature and wind profiles of

the solar corona is of great importance in understanding the coronal heating mechanism

and the dynamics of coronal expansion. Cram (1976) presented the theory for the

formation of the K-coronal spectrum and identified two important observations. He

observed the existence of temperature sensitive anti-nodes at certain wavelengths in the

theoretical K-coronal spectra. The anti-nodes are separated by temperature-insensitive

nodes. Remarkably, Cram showed that the wavelengths of the nodes and anti-nodes are

almost independent of altitude above the solar limb. Because of these features, Cram

suggested that the intensity ratios at two anti-nodes could be used as a diagnostic of the

electron temperature in the K-corona. Based on this temperature diagnostic technique

prescribed by Cram a slit-based spectroscopic study was performed by Ichimoto et.al

(1996) on the solar corona in conjunction with the total solar eclipse of 3 November 1994

in Putre, Chile to determine the temperature profile of the solar corona. In this thesis

Cram’s theory has been extended to incorporate the role of the solar wind in the

formation of the K-corona, and we have identified both temperature and wind sensitive

intensity ratios. The instrument, MACS, for Multi Aperture Coronal Spectrometer, a fiber

optic based spectrograph, was designed for global and simultaneous measurement of the
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thermal electron temperature and the solar wind velocity in the solar corona. The first

ever experiment of this nature was conducted in conjunction with the total solar eclipse of

11 August 1999 in Elazig, Turkey. In this instrument one end of each of twenty fiber

optic tips were positioned in the focal plane of the telescope in such a way that we could

observe conditions simultaneously at many different latitudes and two different radial

distances in the solar corona. The other ends of the fibers were vertically aligned and

placed at the primary focus of the collimating lens of the spectrograph to obtain

simultaneous and global spectra on the solar corona.  By isolating the K-coronal spectrum

from the spectrum recorded by each fiber the temperature and the wind sensitive intensity

ratios were calculated to obtain simultaneous and global measurements of the thermal

electron temperature and the solar wind velocity.  We were successful in obtaining

reliable estimates of the coronal temperature at many positions in the corona. This is the

first time that simultaneous measurements of coronal temperatures have been obtained at

so many points. However due to instrumental scattering encountered during observations,

reliable estimates of the wind velocity turned out to be impossible to obtain. Although

remedial measures were taken prior to observation, this task proved to be difficult owing

to the inability to replicate the conditions expected during an eclipse in the laboratory.

The full extent of the instrumental scattering was apparent only when we analyzed the

observational sequence. Nevertheless the experience obtained from this very first attempt

to simultaneously and globally measure both the wind velocity and the temperature on

the solar corona have provided valuable information to conduct any future observations

successfully.


